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Problem Setup

Consider X1,X2, . . . ,XN ∼ Np(µ,Σ):

µ ∈ Rp and Σ > 0

Both µ and Σ are unknown.

(X̄ ,S) is a sufficient statistic.

Σ is the parameter of interest.
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Statistical Inference

Classical inference

Based on the likelihood approach

Assume N = n + 1 > p and N →∞ with p fixed

Results appeared on most multivariate analysis textbooks

High-dimensional Inference

Assume both (n, p)→∞

No general approach

Fujikoshi, Ulyanov and Shimizu (2010) “Multivariate Statistics
: High-Dimensional and Large-Sample Approximation”, Wiley
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High-Dimensional Data Sets

Examples:

1 Microarray gene data in genetics

2 Financial data in stock markets

3 Curve data in engineering

4 Image data in computer science

.....

Comments:

The dimensionality exceeds the sample size, i.e. p > N.

Collecting additional data may be expensive or infeasible.

Few data analysis before 1970

Fast computers ⇒ New methods needed
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Hypothesis Testing on the Sphericity

Consider
H0 : Σ = σ2I vs. H1 : Σ 6= σ2I .

The likelihood ratio test (LRT) for this hypothesis is,

Λ(x) =


p∏

i=1
l
1/p
i

p∑
i=1

li/p


1
2
pN

where l1, l2, . . . , lp ≥ 0 are the eigenvalues of the MLE for Σ.

When p > n, Σ̂ will be singular, and hence have 0-eigenvalues.

Even when p ≤ n, the eigenvalues of S disperse from the true
ones
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Sample Eigenvalue Dispersion (Σ = I )
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Effects on LRT under High-Dimensionality

If p > N, the LRT is degenerate

If N > p, but p → N, the LRT will become computational
degenerate/unreliable

The LRT cannot be used in a high-dimensional situation.
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Previous Work on High-Dimensional Sphericity Test

John (1971) U test statistic,

U =
1

p
tr

[(
S

(1/p)tr(S)
− I

)2
]
.

Its based on the 1st and 2nd arithmetic means.

Ledoit and Wolf (2002) show its (n, p)-asymptotic null
distribution is N(1, 4).

Its (n, p)-asymptotic distribution under the alternative is
unknown.
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Open Question about tests based on r th Mean

The r th mean of p nonnegative reals, {λ1, . . . , λp} is given by

M(r) =



(
1

p

p∑
i=1

λri

)1/r

if r 6= 0

p∏
i=1

λ
1/p
i if r = 0

The LRT is based on the geometric, M(0), and the first
arithmetic, M(1), means.

John’s U statistic is based on M(1) and M(2).

Open question: Construct a test based on M(r) and M(t) for
r , t > 0?
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Srivastava Test for Sphericity

Srivastava (2005) constructs a test based on M(1) and M(2) using
a parametric function of Σ. Consider the Cauchy-Schwarz
inequality, (

p∑
i=1

λri × 1r

)2

≤ p

(
p∑

i=1

λ2ri

)
.

Thus the ratio

ψr =

(
p∑

i=1
λ2ri /p

)
(

p∑
i=1

λri /p

)2
≥ 1

with equality holding if and only if λi = λ, some constant λ, for all
i = 1, . . . , p.
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Tests based on Cauchy-Schwarz Inequality

H0 : Σ = σ2I vs HA : Σ 6= σ2I

⇔ H0 : ψr = 1 vs HA : ψr > 1.

Srivastava (2005) finds unbiased and consistent estimators for
the numerator and denominator of ψr when r = 1.

The distributions under both the null and alternative
hypotheses, as (n, p)→∞.
The test procedure is consistent as (n, p)→∞.

We explore the case of r = 2.
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Some Assumptions for the New Testing Procedure

Suppose X1, . . . ,XN ∼ Np(µ,Σ), N = n + 1.
Make the following assumptions

(A) : As p →∞, ai → a0i , 0 < a0i <∞, i = 1, . . . , 16,

(B) : As (n, p)→∞, p

n
→ c , where 0 < c <∞,

where

ai =
1

p
trΣi =

1

p

p∑
j=1

λij

and the λjs are the eigenvalues of the covariance matrix, i.e. ai is
the i th arithmetic mean of the eigenvalues of the covariance matrix.
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An Unbiased and Consistent Estimator for a4

Theorem

An unbiased and (n, p)-consistent estimator of a4 =
p∑

i=1
λ4i /p is

given by

â4 =
τ

p

[
trS4 + b · trS3trS + c∗ · (trS2)2 + d · trS2(trS)2 + e · (trS)4

]
,

where

b = −4

n
, c∗ = − 2n2 + 3n − 6

n(n2 + n + 2)
, d =

2(5n + 6)

n(n2 + n + 2)
,

e = − 5n + 6

n2(n2 + n + 2)
, τ =

n5(n2 + n + 2)

(n + 1)(n + 2)(n + 4)(n + 6)(n − 1)(n − 2)(n − 3)
.
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Consistent Estimators for a2 and ψ2

Srivastava (2005) provides an unbiased and consistent
estimator for a2 which is

â2 =
n2

(n − 1)(n + 2)

1

p

[
trS2 − 1

n
(trS)2

]
.

Thus an (n, p)-consistent estimator for ψ2 is provided by

ψ̂2 =
â4
â22
.
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â22
.

Xiaoqian SUN, Colin Gallagher, Thomas Fisher Statistical Inference On the High-dimensional Gaussian Covariance Matrix



Introduction
Test Procedures for the Covariance Matrix

Estimation of the Covariance Matrix
Conclusions Remarks

Likelihood ratio test
Previous High-Dimensional Sphericity Testing
New Testing Procedure
Simulation Study and Data Analysis

Asymptotic Result

Theorem

Under assumptions (A) and (B), as (n, p)→∞

n√
8(8 + 12c + c2)

(
â4
â22
− ψ2

)
D→N(0, ξ22),

where

ξ22 =
1

(8 + 12c + c2)a62

(4

c
a34 −

8

c
a4a2a6 − 4a4a2a23 +

4

c
a22a8

+4a6a32 + 8a22a5a3 + 4ca4a42 + 8ca23a32 + c2a62

)
.
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Test Statistic under H0

Corollary

Under H0, ψ2 = 1, as (n, p)→∞,

T =
n√

8(8 + 12c + c2)

(
â4
â22
− 1

)
D→N(0, 1).

Under H0, ξ22 = 1 since each λi = λ, for i = 1, . . . , p and some
constant λ.
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Power Function under General Asymptotics

Theorem

Under assumptions (A) and (B), as (n, p)→∞ the above testing
procedure based on T is (n, p)-consistent.

For large n and p, the power function of T is

Powerα(T ) ' Φ

 n
(
â4
â22
− 1
)

ξ2
√

8(8 + 12c + c2)
− zα
ξ2

 .

Under assumptions (A) and (B), we know ξ22 is constant. From the
properties of Φ(·), it is clear that Powerα(T )→ 1 as (n, p)→∞.
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â22
− 1
)

ξ2
√

8(8 + 12c + c2)
− zα
ξ2

 .

Under assumptions (A) and (B), we know ξ22 is constant. From the
properties of Φ(·), it is clear that Powerα(T )→ 1 as (n, p)→∞.

Xiaoqian SUN, Colin Gallagher, Thomas Fisher Statistical Inference On the High-dimensional Gaussian Covariance Matrix



Introduction
Test Procedures for the Covariance Matrix

Estimation of the Covariance Matrix
Conclusions Remarks

Likelihood ratio test
Previous High-Dimensional Sphericity Testing
New Testing Procedure
Simulation Study and Data Analysis

QQ-Plots for increasing (n, p) under HA

500 observed values of T , with p/n = 2 under HA with
Σ = diag(λ1, . . . , λp) with λi ∼ Unif (0.5, 1.5).
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Power Study

Simulate 1000 observed values of T under H0:Σ = I and find
Tα such that

P(T > Tα) = α.

Tα is the estimated critical point at significance level α.

Simulate from a p-dimensional normal distribution with zero
mean vector and a near spherical covariance matrix. Define
near spherical matrices to be of the form,

Σ = σ2


φ 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , φ 6= 1.
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Simulation Power Functions

Simulated Power for each test, c = 1 with φ = 3.5
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Data Analysis

Gene Expression levels of 72 patients either suffering from acute
lymphoblastic leukemia or acute myeloid leukemia were measured
on Affymetric oligonucleotite microarrays.

47 and 25 patients of each respective leukemia type.

Use a pooled covariance with only n = 70 degrees of freedom.

Data is comprised of p = 3571 genes.

T = 242.4386, TSri = 2294.9184, and UJ = 2326.7520.

p-value ≈ 0 for all three tests and thus H0 is rejected.
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Estimation of the Covariance Matrix

Estimation of the Covariance Matrix is typically achieved with the
sample covariance matrix, i.e.

S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)′

=
1

n
(X− X̄)(X− X̄)′

where x̄ is the sample mean vector and X̄ is a matrix, with the
columns composed of repeating x̄.
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Properties of Sample Covariance Matrix

Pros

S is an unbiased and N-consistent estimator for Σ.

S is based on the MLE of Σ.

S−1 can be used to estimate the precision matrix Σ−1.

Works well when N > p.

Cons

When p > N, S is singular, and hence an estimate for the
precision matrix is not possible.

S becomes ill-conditioned as p → N.

As p → N or p > N, the eigenvalues of S diverge from the
eigenvalues of Σ.
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Need Good Estimators for Σ

A good estimate for Σ is needed in many statistical applications:

Hotelling’s T 2 statistic requires an estimate of the precision
matrix

Factor Analysis

Principal Components

Discrimination and Classification

Time-Series Analysis
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Stein-type Shrinkage Estimation for Σ

Consider a convex combination of the empirical sample covariance
matrix with that of a target matrix,

S∗ = λM + (1− λ)S ,

where λ ∈ [0, 1] is known as the shrinkage intensity and M is a
shrinkage target matrix. M is chosen such that:

It is well-structured, Positive Definite and well-conditioned.

It will be biased, but will have less variance.

How to find a suitable λ?
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Historical Approach and Optimal Intensity

Historical approaches

Maximizing Cross-Validation.

Bootstrap methods, Bayesian approach.

MCMC Methods.

Ledoit and Wolf (2003) show with respect to the squared loss
‖Σ∗ − Σ‖2, or quadratic risk, an optimal λ will always exist.
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Ledoit and Wolf (2004) Main Results

Consider the target matrix, M = a1I where a1 = trΣ/p.

Define:

α2 = ‖Σ− a1I‖2,
β2 = E [‖S − Σ‖2],

δ2 = E [‖S − a1I‖2],

and δ2 = α2 + β2.

A calculus-based minimization of the objective function
E [‖Σ∗ − Σ‖2] provides the result

λ = β2/(α2 + β2) = β2/δ2, 1− λ = α2/δ2.

Unfortunately, Σ∗ = β2

δ2
a1I + α2

δ2
S is not a bona fide estimator

since it depends on knowledge of the covariance matrix Σ.
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Estimators of the Optimal Intensity

Recent approaches at estimating the optimal λ

Ledoit and Wolf (2004) provide n-consistent estimators of α2,
β2 and δ2.

Schäfer and Strimmer (2005) provide an unbiased estimator
for λ.

Under the assumption of Normality of the data, Chen, Wiesel
and Hero (2009) provide an unbiased estimator for λ by
utilizing the Rao-Blackwell theorem.

Each performs well as n grows large.
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Our Approach

Assume that
E [tr(S)] = tr(Σ)

and

E [tr(S2)] =
n + 1

n
trΣ2 +

1

n
(trΣ)2.

Both hold in many cases, specifically when data comes from a
multivariate normal distribution.
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Explicit Calculation of λ

Hence we can explicitly calculate

δ2 = E [‖S − a1I‖2] = E [‖S‖2]− 2a1E [〈S , I 〉] + a21‖I‖2

=
n + 1

n
a2 +

p − n

n
a21.

Likewise, we expand the term α2 as follows

α2 = ‖Σ− a1I‖2 = a2 − a21.

where ai = trΣi/p.

A similar result holds for β2 but is not needed.
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Reduced Problem

Under the normality assumption and

(A) : As p →∞, ai → a0i , 0 < a0i <∞, i = 1, . . . , 4,

(B) : n = O
(

pδ
)
, 0 ≤ δ ≤ 1,

Srivastava (2005) finds unbiased and (n, p)-consistent estimators
for a1 and a2:

â1 = trS/p

and

â2 =
n2

(n − 1)(n + 2)

1

p

[
trS2 − 1

n
(trS)2

]
.

From Assumption (B), the estimators for a1 and a2 should be quite
accurate in large p, small n situations.
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Other Target Matrices

Analogous results hold for the targets M = I , and M = D where D
is the diagonal matrix comprised of the diagonal elements of S .

Ledoit and Wolf (2004) only provide an estimator for the
M = a1I case, but its easily adapted to M = I .

Chen, Wiesel and Hero (2009) only provide a result for
M = a1I .

Schäfer and Strimmer (2005) provide unbiased estimators for
several targets (including some not discussed here) including
M = I and M = D.

We can explicitly calculate the optimal shrinkage intensity, λ,
in terms of a1 and a2.
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Simulation Setup

A simulation study justifies our proposed estimator.

Sample n + 1 observations from a p-dimensional multivariate
normal distribution with zero mean vector and covariance
matrix Σ.

Σ is a random positive definite matrix with eigenvalues
uniformly distributed over (0.5, 10.5).

The n + 1 samples of p dimension are used to compute the
various shrinkage estimators.

The process is repeated m = 1000 times with the same
covariance matrix Σ.

First we explore the estimation of λ.
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Simulation of Optimal λ for M = a1I , n = 40, p = 20

λnew λLW λRBLW λSchaf

Simulated Mean 0.6595865 0.6265542 0.6424440 0.6407515
Standard Error 0.0000602 0.0000616 0.0000588 0.0000608

Table: λ estimation for n = 40, p = 20, M = a1I

Since the true covariance matrix is known in the simulation, the
optimal intensity can be calculated exactly, it is 0.6503192.
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Simulation of Optimal λ for M = a1I , n = 5, p = 100

λnew λLW λRBLW λSchaf

Simulated Mean 0.9887804 0.6634387 0.7909521 0.7950775
Standard Error 0.0000218 0.0000532 0.0000176 0.0000194

Table: λ estimation for n = 5, p = 100, M = a1I

With the optimal intensity at λ = 0.9868715.
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Improvement over Sample Covariance Matrix

How do the Optimal Stein-type shrinkage estimators improve over
the sample covariance matrix? We look at the simulated risk

Risk(S∗) = E [‖S∗ − Σ‖2]

and the percentage relative improvement in average loss (PRIAL)

PRIAL(S∗) =
E [‖S − Σ‖2]− E [‖S∗ − Σ‖2]

E [‖S − Σ‖2]
× 100.
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Simulation of Stein-type Shrinkage Estimators, M = a1I

Same setup as before, the true Σ is a random positive definite
matrix with eigenvalues uniformly distributed between (0.5, 10.5).

Estimator S S∗LW S∗RBLW S∗Schaf S∗new
Risk 529.332 68.525 29.446 28.781 8.800
SE on Risk 2.536 0.762 0.193 0.206 0.020
PRIAL 0 87.054 94.437 94.563 98.338
Cond. Num. ∞ 15.946 8.602 8.455 1.702

Table: Shrinkage estimation for n = 5, p = 100, M = a1I
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Data Example on E.coli Data

Schmidt-Heck et al (2004) identified 102 genes, of 4,289 protein
coding genes, as differentially expressed in one or more samples
after induction of a recombinant protein on the microorganism
Escherichia coli. The data monitored all 4,289 protein coding
genes at 8 different times after the induction of the protein.

Target M = a1I M = I M = diag(S)

New Estimators 156.73 155.95 468.37
LW-Type 384.89 382.97 NA
RBLW-Type 212.23 NA NA
Schäfer-Strimmer 288.79 287.35 715.25

Table: Condition Numbers for estimators and common targets on E.coli
data, p = 102, N = 8
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Conclusion remarks and possible future work

A new testing procedure for the sphericity

Stein-type shrinkage estimators

Good performances by simulation studies

Possible to release the condition p/n→ c ∈ (0,∞)?

Dropping the normality assumption?

Other tests based on M(r) and M(t)?

Other loss functions (Stein-type shrinkage estimators)?

Possible Bayesian approaches?
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