Statistical Inference On the High-dimensional Gaussian Covariance Matrix

Xiaoqian SUN, Colin Gallagher, Thomas Fisher

Department of Mathematical Sciences, Clemson University

$$
\text { June 6, } 2011
$$

Outline

- Introduction
- Hypothesis Testing on the Covariance Matrix
- Estimation of the Covariance Matrix
- Conclusions and Future Work.

Problem Setup

Consider $X_{1}, X_{2}, \ldots, X_{N} \sim N_{p}(\mu, \Sigma):$

- $\mu \in R^{p}$ and $\Sigma>0$
- Both μ and Σ are unknown.
- (\bar{X}, S) is a sufficient statistic.
- Σ is the parameter of interest.

Introduction

Statistical Inference

Statistical Inference

- Classical inference
- Based on the likelihood approach
- Assume $N=n+1>p$ and $N \rightarrow \infty$ with p fixed
- Results appeared on most multivariate analysis textbooks

Statistical Inference

- Classical inference
- Based on the likelihood approach
- Assume $N=n+1>p$ and $N \rightarrow \infty$ with p fixed
- Results appeared on most multivariate analysis textbooks
- High-dimensional Inference
- Assume both $(n, p) \rightarrow \infty$
- No general approach
- Fujikoshi, Ulyanov and Shimizu (2010) "Multivariate Statistics : High-Dimensional and Large-Sample Approximation", Wiley

High-Dimensional Data Sets

Examples:

(1) Microarray gene data in genetics
(2) Financial data in stock markets
(3) Curve data in engineering
(9) Image data in computer science

High-Dimensional Data Sets

Examples:
(1) Microarray gene data in genetics
(2) Financial data in stock markets
(3) Curve data in engineering
(9) Image data in computer science

Comments:

- The dimensionality exceeds the sample size, i.e. $p>N$.
- Collecting additional data may be expensive or infeasible.
- Few data analysis before 1970
- Fast computers \Rightarrow New methods needed

Hypothesis Testing on the Sphericity

Consider

$$
H_{0}: \Sigma=\sigma^{2} l \text { vs. } H_{1}: \Sigma \neq \sigma^{2} l .
$$

Hypothesis Testing on the Sphericity

Consider

$$
H_{0}: \Sigma=\sigma^{2} I \quad \text { vs. } \quad H_{1}: \Sigma \neq \sigma^{2} I
$$

The likelihood ratio test (LRT) for this hypothesis is,

$$
\Lambda(\mathbf{x})=\left(\frac{\prod_{i=1}^{p} I_{i}^{1 / p}}{\sum_{i=1}^{p} I_{i} / p}\right)^{\frac{1}{2} p N}
$$

where $I_{1}, l_{2}, \ldots, I_{p} \geq 0$ are the eigenvalues of the MLE for Σ.

Hypothesis Testing on the Sphericity

Consider

$$
H_{0}: \Sigma=\sigma^{2} I \quad \text { vs. } \quad H_{1}: \Sigma \neq \sigma^{2} I
$$

The likelihood ratio test (LRT) for this hypothesis is,

$$
\Lambda(\mathbf{x})=\left(\frac{\prod_{i=1}^{p} \iota_{i}^{1 / p}}{\sum_{i=1}^{p} \iota_{i} / p}\right)^{\frac{1}{2} p N}
$$

where $I_{1}, l_{2}, \ldots, I_{p} \geq 0$ are the eigenvalues of the MLE for Σ.

- When $p>n, \hat{\Sigma}$ will be singular, and hence have 0-eigenvalues.
- Even when $p \leq n$, the eigenvalues of S disperse from the true ones

Introduction
Introduction

Sample Eigenvalue Dispersion ($\Sigma=I$)

Effects on LRT under High-Dimensionality

- If $p>N$, the LRT is degenerate
- If $N>p$, but $p \rightarrow N$, the LRT will become computational degenerate/unreliable
- The LRT cannot be used in a high-dimensional situation.

Previous Work on High-Dimensional Sphericity Test

- John (1971) U test statistic,

$$
U=\frac{1}{p} \operatorname{tr}\left[\left(\frac{S}{(1 / p) \operatorname{tr}(S)}-I\right)^{2}\right]
$$

- Its based on the 1st and 2nd arithmetic means.
- Ledoit and Wolf (2002) show its (n, p)-asymptotic null distribution is $N(1,4)$.
- Its (n, p)-asymptotic distribution under the alternative is unknown.

Open Question about tests based on $r^{\text {th }}$ Mean

The $r^{\text {th }}$ mean of p nonnegative reals, $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ is given by

$$
M(r)= \begin{cases}\left(\frac{1}{p} \sum_{i=1}^{p} \lambda_{i}^{r}\right)^{1 / r} & \text { if } r \neq 0 \\ \prod_{i=1}^{p} \lambda_{i}^{1 / p} & \text { if } r=0\end{cases}
$$

Open Question about tests based on $r^{\text {th }}$ Mean

The $r^{\text {th }}$ mean of p nonnegative reals, $\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ is given by

$$
M(r)= \begin{cases}\left(\frac{1}{p} \sum_{i=1}^{p} \lambda_{i}^{r}\right)^{1 / r} & \text { if } r \neq 0 \\ \prod_{i=1}^{p} \lambda_{i}^{1 / p} & \text { if } r=0\end{cases}
$$

- The LRT is based on the geometric, $M(0)$, and the first arithmetic, $M(1)$, means.
- John's U statistic is based on $M(1)$ and $M(2)$.
- Open question: Construct a test based on $M(r)$ and $M(t)$ for $r, t>0$?

Srivastava Test for Sphericity

Srivastava (2005) constructs a test based on $M(1)$ and $M(2)$ using a parametric function of Σ. Consider the Cauchy-Schwarz inequality,

$$
\left(\sum_{i=1}^{p} \lambda_{i}^{r} \times 1^{r}\right)^{2} \leq p\left(\sum_{i=1}^{p} \lambda_{i}^{2 r}\right)
$$

Thus the ratio

$$
\psi_{r}=\frac{\left(\sum_{i=1}^{p} \lambda_{i}^{2 r} / p\right)}{\left(\sum_{i=1}^{p} \lambda_{i}^{r} / p\right)^{2}} \geq 1
$$

with equality holding if and only if $\lambda_{i}=\lambda$, some constant λ, for all $i=1, \ldots, p$.

Tests based on Cauchy-Schwarz Inequality

$$
\begin{aligned}
& H_{0}: \Sigma=\sigma^{2} l \quad \text { vs } \quad H_{A}: \Sigma \neq \sigma^{2} l \\
\Leftrightarrow & H_{0}: \psi_{r}=1 \quad \text { vs } \quad H_{A}: \psi_{r}>1 .
\end{aligned}
$$

Tests based on Cauchy-Schwarz Inequality

- $H_{0}: \Sigma=\sigma^{2} I$ vs $H_{A}: \Sigma \neq \sigma^{2} I$
$\Leftrightarrow H_{0}: \psi_{r}=1$ vs $H_{A}: \psi_{r}>1$.
- Srivastava (2005) finds unbiased and consistent estimators for the numerator and denominator of ψ_{r} when $r=1$.

Tests based on Cauchy-Schwarz Inequality

- $H_{0}: \Sigma=\sigma^{2} I$ vs $H_{A}: \Sigma \neq \sigma^{2} I$
$\Leftrightarrow H_{0}: \psi_{r}=1$ vs $H_{A}: \psi_{r}>1$.
- Srivastava (2005) finds unbiased and consistent estimators for the numerator and denominator of ψ_{r} when $r=1$.
- The distributions under both the null and alternative hypotheses, as $(n, p) \rightarrow \infty$.
- The test procedure is consistent as $(n, p) \rightarrow \infty$.

Tests based on Cauchy-Schwarz Inequality

- $H_{0}: \Sigma=\sigma^{2} I$ vs $H_{A}: \Sigma \neq \sigma^{2} I$
$\Leftrightarrow H_{0}: \psi_{r}=1$ vs $H_{A}: \psi_{r}>1$.
- Srivastava (2005) finds unbiased and consistent estimators for the numerator and denominator of ψ_{r} when $r=1$.
- The distributions under both the null and alternative hypotheses, as $(n, p) \rightarrow \infty$.
- The test procedure is consistent as $(n, p) \rightarrow \infty$.
- We explore the case of $r=2$.

Some Assumptions for the New Testing Procedure

Suppose $\mathbf{X}_{1}, \ldots, \mathbf{X}_{N} \sim N_{p}(\boldsymbol{\mu}, \Sigma), N=n+1$.
Make the following assumptions

$$
\begin{aligned}
& \text { (A) : As } p \rightarrow \infty, a_{i} \rightarrow a_{i}^{0}, 0<a_{i}^{0}<\infty, i=1, \ldots, 16, \\
& \text { (B) : As }(n, p) \rightarrow \infty, \frac{p}{n} \rightarrow c, \text { where } 0<c<\infty,
\end{aligned}
$$

where

$$
a_{i}=\frac{1}{p} \operatorname{tr} \Sigma^{i}=\frac{1}{p} \sum_{j=1}^{p} \lambda_{j}^{i}
$$

and the $\lambda_{j} s$ are the eigenvalues of the covariance matrix, i.e. a_{j} is the $i^{\text {th }}$ arithmetic mean of the eigenvalues of the covariance matrix.

An Unbiased and Consistent Estimator for a_{4}

Theorem

An unbiased and (n, p)-consistent estimator of $a_{4}=\sum_{i=1}^{p} \lambda_{i}^{4} / p$ is given by

$$
\hat{a}_{4}=\frac{\tau}{p}\left[\operatorname{tr} S^{4}+b \cdot \operatorname{tr} S^{3} \operatorname{tr} S+c^{*} \cdot\left(\operatorname{tr} S^{2}\right)^{2}+d \cdot \operatorname{tr} S^{2}(\operatorname{tr} S)^{2}+e \cdot(\operatorname{tr} S)^{4}\right]
$$

where

$$
\begin{aligned}
& b=-\frac{4}{n}, c^{*}=-\frac{2 n^{2}+3 n-6}{n\left(n^{2}+n+2\right)}, d=\frac{2(5 n+6)}{n\left(n^{2}+n+2\right)}, \\
& e=-\frac{5 n+6}{n^{2}\left(n^{2}+n+2\right)}, \tau=\frac{n^{5}\left(n^{2}+n+2\right)}{(n+1)(n+2)(n+4)(n+6)(n-1)(n-}
\end{aligned}
$$

Consistent Estimators for a_{2} and ψ_{2}

- Srivastava (2005) provides an unbiased and consistent estimator for a_{2} which is

$$
\hat{\mathrm{a}}_{2}=\frac{n^{2}}{(n-1)(n+2)} \frac{1}{p}\left[\operatorname{tr} S^{2}-\frac{1}{n}(\operatorname{tr} S)^{2}\right] .
$$

Consistent Estimators for a_{2} and ψ_{2}

- Srivastava (2005) provides an unbiased and consistent estimator for a_{2} which is

$$
\hat{\mathrm{a}}_{2}=\frac{n^{2}}{(n-1)(n+2)} \frac{1}{p}\left[\operatorname{tr} S^{2}-\frac{1}{n}(\operatorname{tr} S)^{2}\right] .
$$

- Thus an (n, p)-consistent estimator for ψ_{2} is provided by

$$
\hat{\psi}_{2}=\frac{\hat{a}_{4}}{\hat{a}_{2}^{2}} .
$$

Asymptotic Result

Theorem

Under assumptions (A) and (B), as $(n, p) \rightarrow \infty$

$$
\frac{n}{\sqrt{8\left(8+12 c+c^{2}\right)}}\left(\frac{\hat{a}_{4}}{\hat{a}_{2}^{2}}-\psi_{2}\right) \xrightarrow{D} N\left(0, \xi_{2}^{2}\right),
$$

where

$$
\begin{array}{r}
\xi_{2}^{2}=\frac{1}{\left(8+12 c+c^{2}\right) a_{2}^{6}}\left(\frac{4}{c} a_{4}^{3}-\frac{8}{c} a_{4} a_{2} a_{6}-4 a_{4} a_{2} a_{3}^{2}+\frac{4}{c} a_{2}^{2} a_{8}\right. \\
\left.+4 a_{6} a_{2}^{3}+8 a_{2}^{2} a_{5} a_{3}+4 c a_{4} a_{2}^{4}+8 c a_{3}^{2} a_{2}^{3}+c^{2} a_{2}^{6}\right) .
\end{array}
$$

Test Statistic under H_{0}

Corollary

Under $H_{0}, \psi_{2}=1$, as $(n, p) \rightarrow \infty$,

$$
T=\frac{n}{\sqrt{8\left(8+12 c+c^{2}\right)}}\left(\frac{\hat{a}_{4}}{\hat{a}_{2}^{2}}-1\right) \xrightarrow{D} N(0,1) .
$$

Under $H_{0}, \xi_{2}^{2}=1$ since each $\lambda_{i}=\lambda$, for $i=1, \ldots, p$ and some constant λ.

Power Function under General Asymptotics

Theorem

Under assumptions (A) and (B), as $(n, p) \rightarrow \infty$ the above testing procedure based on T is (n, p)-consistent.

Power Function under General Asymptotics

Theorem

Under assumptions (A) and (B), as $(n, p) \rightarrow \infty$ the above testing procedure based on T is (n, p)-consistent.

For large n and p, the power function of T is

$$
\operatorname{Power}_{\alpha}(T) \simeq \Phi\left(\frac{n\left(\frac{\hat{\partial}_{4}}{\hat{a}_{2}}-1\right)}{\xi_{2} \sqrt{8\left(8+12 c+c^{2}\right)}}-\frac{z_{\alpha}}{\xi_{2}}\right) .
$$

Under assumptions (A) and (B), we know ξ_{2}^{2} is constant. From the properties of $\Phi(\cdot)$, it is clear that $\operatorname{Power}_{\alpha}(T) \rightarrow 1$ as $(n, p) \rightarrow \infty$.

QQ-Plots for increasing (n, p) under H_{A}

500 observed values of T, with $p / n=2$ under H_{A} with $\Sigma=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ with $\lambda_{i} \sim \operatorname{Unif}(0.5,1.5)$.

Normal QQ-Plot

Theoretical Quantiles

Power Study

- Simulate 1000 observed values of T under $H_{0}: \Sigma=I$ and find T_{α} such that

$$
P\left(T>T_{\alpha}\right)=\alpha
$$

T_{α} is the estimated critical point at significance level α.

- Simulate from a p-dimensional normal distribution with zero mean vector and a near spherical covariance matrix. Define near spherical matrices to be of the form,

$$
\Sigma=\sigma^{2}\left(\begin{array}{cccc}
\phi & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right), \phi \neq 1
$$

Simulation Power Functions

Simulated Power for each test, $c=1$ with $\phi=3.5$
Simulated Power

Data Analysis

Gene Expression levels of 72 patients either suffering from acute lymphoblastic leukemia or acute myeloid leukemia were measured on Affymetric oligonucleotite microarrays.

- 47 and 25 patients of each respective leukemia type.
- Use a pooled covariance with only $n=70$ degrees of freedom.
- Data is comprised of $p=3571$ genes.

Data Analysis

Gene Expression levels of 72 patients either suffering from acute lymphoblastic leukemia or acute myeloid leukemia were measured on Affymetric oligonucleotite microarrays.

- 47 and 25 patients of each respective leukemia type.
- Use a pooled covariance with only $n=70$ degrees of freedom.
- Data is comprised of $p=3571$ genes.
- $T=242.4386, T_{S r i}=2294.9184$, and $U_{J}=2326.7520$.
- p-value ≈ 0 for all three tests and thus H_{0} is rejected.

Estimation of the Covariance Matrix

Estimation of the Covariance Matrix is typically achieved with the sample covariance matrix, i.e.

$$
\begin{aligned}
S & =\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right)^{\prime} \\
& =\frac{1}{n}(\mathbf{X}-\overline{\mathbf{X}})(\mathbf{X}-\overline{\mathbf{X}})^{\prime}
\end{aligned}
$$

where $\overline{\mathbf{x}}$ is the sample mean vector and $\overline{\mathbf{X}}$ is a matrix, with the columns composed of repeating $\overline{\mathbf{x}}$.

Properties of Sample Covariance Matrix

Pros

- S is an unbiased and N-consistent estimator for Σ.
- S is based on the MLE of Σ.
- S^{-1} can be used to estimate the precision matrix Σ^{-1}.
- Works well when $N>p$.

Cons

- When $p>N, S$ is singular, and hence an estimate for the precision matrix is not possible.
- S becomes ill-conditioned as $p \rightarrow N$.
- As $p \rightarrow N$ or $p>N$, the eigenvalues of S diverge from the eigenvalues of Σ.

Need Good Estimators for Σ

A good estimate for Σ is needed in many statistical applications:

- Hotelling's T^{2} statistic requires an estimate of the precision matrix
- Factor Analysis
- Principal Components
- Discrimination and Classification
- Time-Series Analysis

Stein-type Shrinkage Estimation for Σ

Consider a convex combination of the empirical sample covariance matrix with that of a target matrix,

$$
S^{*}=\lambda M+(1-\lambda) S
$$

where $\lambda \in[0,1]$ is known as the shrinkage intensity and M is a shrinkage target matrix. M is chosen such that:

- It is well-structured, Positive Definite and well-conditioned.
- It will be biased, but will have less variance.

Stein-type Shrinkage Estimation for Σ

Consider a convex combination of the empirical sample covariance matrix with that of a target matrix,

$$
S^{*}=\lambda M+(1-\lambda) S
$$

where $\lambda \in[0,1]$ is known as the shrinkage intensity and M is a shrinkage target matrix. M is chosen such that:

- It is well-structured, Positive Definite and well-conditioned.
- It will be biased, but will have less variance.

How to find a suitable λ ?

Historical Approach and Optimal Intensity

Historical approaches

- Maximizing Cross-Validation.
- Bootstrap methods, Bayesian approach.
- MCMC Methods.

Historical Approach and Optimal Intensity

Historical approaches

- Maximizing Cross-Validation.
- Bootstrap methods, Bayesian approach.
- MCMC Methods.

Ledoit and Wolf (2003) show with respect to the squared loss $\left\|\Sigma^{*}-\Sigma\right\|^{2}$, or quadratic risk, an optimal λ will always exist.

Ledoit and Wolf (2004) Main Results

Consider the target matrix, $M=a_{1} /$ where $a_{1}=\operatorname{tr} \Sigma / p$.

Ledoit and Wolf (2004) Main Results

Consider the target matrix, $M=a_{1} /$ where $a_{1}=\operatorname{tr} \Sigma / p$. Define:

$$
\begin{aligned}
\alpha^{2} & =\left\|\Sigma-a_{1} /\right\|^{2}, \\
\beta^{2} & =E\left[\|S-\Sigma\|^{2}\right], \\
\delta^{2} & =E\left[\left\|S-a_{1} /\right\|^{2}\right],
\end{aligned}
$$

and $\delta^{2}=\alpha^{2}+\beta^{2}$.
A calculus-based minimization of the objective function $E\left[\left\|\Sigma^{*}-\Sigma\right\|^{2}\right]$ provides the result

$$
\lambda=\beta^{2} /\left(\alpha^{2}+\beta^{2}\right)=\beta^{2} / \delta^{2}, \quad 1-\lambda=\alpha^{2} / \delta^{2} .
$$

Ledoit and Wolf (2004) Main Results

Consider the target matrix, $M=a_{1} /$ where $a_{1}=\operatorname{tr} \Sigma / p$. Define:

$$
\begin{aligned}
\alpha^{2} & =\left\|\Sigma-a_{1} /\right\|^{2}, \\
\beta^{2} & =E\left[\|S-\Sigma\|^{2}\right], \\
\delta^{2} & =E\left[\left\|S-a_{1} /\right\|^{2}\right],
\end{aligned}
$$

and $\delta^{2}=\alpha^{2}+\beta^{2}$.
A calculus-based minimization of the objective function $E\left[\left\|\Sigma^{*}-\Sigma\right\|^{2}\right]$ provides the result

$$
\lambda=\beta^{2} /\left(\alpha^{2}+\beta^{2}\right)=\beta^{2} / \delta^{2}, \quad 1-\lambda=\alpha^{2} / \delta^{2}
$$

Unfortunately, $\Sigma^{*}=\frac{\beta^{2}}{\delta^{2}} a_{1} I+\frac{\alpha^{2}}{\delta^{2}} S$ is not a bona fide estimator since it depends on knowledge of the covariance matrix Σ.

Estimators of the Optimal Intensity

Recent approaches at estimating the optimal λ

- Ledoit and Wolf (2004) provide n-consistent estimators of α^{2}, β^{2} and δ^{2}.
- Schäfer and Strimmer (2005) provide an unbiased estimator for λ.
- Under the assumption of Normality of the data, Chen, Wiesel and Hero (2009) provide an unbiased estimator for λ by utilizing the Rao-Blackwell theorem.

Estimators of the Optimal Intensity

Recent approaches at estimating the optimal λ

- Ledoit and Wolf (2004) provide n-consistent estimators of α^{2}, β^{2} and δ^{2}.
- Schäfer and Strimmer (2005) provide an unbiased estimator for λ.
- Under the assumption of Normality of the data, Chen, Wiesel and Hero (2009) provide an unbiased estimator for λ by utilizing the Rao-Blackwell theorem.

Each performs well as n grows large.

Our Approach

Assume that

$$
E[\operatorname{tr}(S)]=\operatorname{tr}(\Sigma)
$$

and

$$
E\left[\operatorname{tr}\left(S^{2}\right)\right]=\frac{n+1}{n} \operatorname{tr} \Sigma^{2}+\frac{1}{n}(\operatorname{tr} \Sigma)^{2} .
$$

Both hold in many cases, specifically when data comes from a multivariate normal distribution.

Explicit Calculation of λ

Hence we can explicitly calculate

$$
\begin{aligned}
\delta^{2}=E\left[\left\|S-a_{1} I\right\|^{2}\right] & =E\left[\|S\|^{2}\right]-2 a_{1} E[\langle S, I\rangle]+a_{1}^{2}\|I\|^{2} \\
& =\frac{n+1}{n} a_{2}+\frac{p-n}{n} a_{1}^{2} .
\end{aligned}
$$

Likewise, we expand the term α^{2} as follows

$$
\alpha^{2}=\left\|\Sigma-a_{1} /\right\|^{2}=a_{2}-a_{1}^{2} .
$$

where $a_{i}=\operatorname{tr} \Sigma^{i} / p$.
A similar result holds for β^{2} but is not needed.

Reduced Problem

Under the normality assumption and

$$
\begin{aligned}
& \text { (A) : As } p \rightarrow \infty, a_{i} \rightarrow a_{i}^{0}, 0<a_{i}^{0}<\infty, i=1, \ldots, 4, \\
& \text { (B) : } n=O\left(p^{\delta}\right), 0 \leq \delta \leq 1
\end{aligned}
$$

Srivastava (2005) finds unbiased and (n, p)-consistent estimators for a_{1} and a_{2} :

$$
\hat{a}_{1}=\operatorname{tr} S / p
$$

and

$$
\hat{\mathrm{a}}_{2}=\frac{n^{2}}{(n-1)(n+2)} \frac{1}{p}\left[\operatorname{tr} S^{2}-\frac{1}{n}(\operatorname{tr} S)^{2}\right] .
$$

Reduced Problem

Under the normality assumption and

$$
\begin{aligned}
& \text { (A) : As } p \rightarrow \infty, a_{i} \rightarrow a_{i}^{0}, 0<a_{i}^{0}<\infty, i=1, \ldots, 4, \\
& \text { (B) : } n=O\left(p^{\delta}\right), 0 \leq \delta \leq 1
\end{aligned}
$$

Srivastava (2005) finds unbiased and (n, p)-consistent estimators for a_{1} and a_{2} :

$$
\hat{a}_{1}=\operatorname{tr} S / p
$$

and

$$
\hat{\mathrm{a}}_{2}=\frac{n^{2}}{(n-1)(n+2)} \frac{1}{p}\left[\operatorname{tr} S^{2}-\frac{1}{n}(\operatorname{tr} S)^{2}\right] .
$$

From Assumption (B), the estimators for a_{1} and a_{2} should be quite accurate in large p, small n situations.

Other Target Matrices

Analogous results hold for the targets $M=I$, and $M=D$ where D is the diagonal matrix comprised of the diagonal elements of S.

- Ledoit and Wolf (2004) only provide an estimator for the $M=a_{1} l$ case, but its easily adapted to $M=I$.
- Chen, Wiesel and Hero (2009) only provide a result for $M=a_{1} l$.
- Schäfer and Strimmer (2005) provide unbiased estimators for several targets (including some not discussed here) including $M=I$ and $M=D$.
- We can explicitly calculate the optimal shrinkage intensity, λ, in terms of a_{1} and a_{2}.

Simulation Setup

A simulation study justifies our proposed estimator.

- Sample $n+1$ observations from a p-dimensional multivariate normal distribution with zero mean vector and covariance matrix Σ.
- Σ is a random positive definite matrix with eigenvalues uniformly distributed over ($0.5,10.5$).
- The $n+1$ samples of p dimension are used to compute the various shrinkage estimators.
- The process is repeated $m=1000$ times with the same covariance matrix Σ.
First we explore the estimation of λ.

Simulation of Optimal λ for $M=a_{1} I, n=40, p=20$

	$\lambda_{\text {new }}$	$\lambda_{L W}$	$\lambda_{R B L W}$	$\lambda_{\text {Schaf }}$
Simulated Mean	0.6595865	0.6265542	0.6424440	0.6407515
Standard Error	0.0000602	0.0000616	0.0000588	0.0000608

Table: λ estimation for $n=40, p=20, M=a_{1} l$

Since the true covariance matrix is known in the simulation, the optimal intensity can be calculated exactly, it is 0.6503192 .

Typical Estimation

Simulation of Optimal λ for $M=a_{1} I, n=5, p=100$

	$\lambda_{\text {new }}$	$\lambda_{L W}$	$\lambda_{\text {RBLW }}$	$\lambda_{\text {Schaf }}$
Simulated Mean	0.9887804	0.6634387	0.7909521	0.7950775
Standard Error	0.0000218	0.0000532	0.0000176	0.0000194

Table: λ estimation for $n=5, p=100, M=a_{1} I$

With the optimal intensity at $\lambda=0.9868715$.

Improvement over Sample Covariance Matrix

How do the Optimal Stein-type shrinkage estimators improve over the sample covariance matrix? We look at the simulated risk

$$
\operatorname{Risk}\left(S^{*}\right)=E\left[\left\|S^{*}-\Sigma\right\|^{2}\right]
$$

and the percentage relative improvement in average loss (PRIAL)

$$
\operatorname{PRIAL}\left(S^{*}\right)=\frac{E\left[\|S-\Sigma\|^{2}\right]-E\left[\left\|S^{*}-\Sigma\right\|^{2}\right]}{E\left[\|S-\Sigma\|^{2}\right]} \times 100
$$

Typical Estimation

Simulation of Stein-type Shrinkage Estimators, $M=a_{1} I$

Same setup as before, the true Σ is a random positive definite matrix with eigenvalues uniformly distributed between (0.5, 10.5).

Estimator	S	$S_{L W}^{*}$	$S_{\text {RBLW }}^{*}$	$S_{\text {Schaf }}^{*}$	$S_{\text {new }}^{*}$
Risk	529.332	68.525	29.446	28.781	8.800
SE on Risk	2.536	0.762	0.193	0.206	0.020
PRIAL	0	87.054	94.437	94.563	98.338
Cond. Num.	∞	15.946	8.602	8.455	1.702

Table: Shrinkage estimation for $n=5, p=100, M=a_{1} I$

Data Example on E.coli Data

Schmidt-Heck et al (2004) identified 102 genes, of 4,289 protein coding genes, as differentially expressed in one or more samples after induction of a recombinant protein on the microorganism Escherichia coli. The data monitored all 4,289 protein coding genes at 8 different times after the induction of the protein.

Target	$M=a_{1} l$	$M=I$	$M=\operatorname{diag}(S)$
New Estimators	156.73	155.95	468.37
LW-Type	384.89	382.97	NA
RBLW-Type	212.23	NA	NA
Schäfer-Strimmer	288.79	287.35	715.25

Table: Condition Numbers for estimators and common targets on E.coli data, $p=102, N=8$

Conclusion remarks and possible future work

- A new testing procedure for the sphericity
- Stein-type shrinkage estimators
- Good performances by simulation studies

Conclusion remarks and possible future work

- A new testing procedure for the sphericity
- Stein-type shrinkage estimators
- Good performances by simulation studies
- Possible to release the condition $p / n \rightarrow c \in(0, \infty)$?
- Dropping the normality assumption?
- Other tests based on $M(r)$ and $M(t)$?
- Other loss functions (Stein-type shrinkage estimators)?
- Possible Bayesian approaches?

References

(1) Fisher, T., Sun, X. and Gallagher, C. (2010) "A New Test for Sphericity of the Covariance Matrix for High Dimensional Data", J. of Multivariate Anal., V. 101, pp.2554-2570
(2) Fisher, T. and Sun, X. (2011), "Improved Stein-Type Shrinkage Estimators for the Multivariate Normal Covariance Matrix", Computat. Statist. and Data Anal., 55, 1909-1918
(3) Srivastava, M. (2005), "Some tests concerning the covariance matrix in high dimensional data", J. Japan Statist. Soc., Vol.35, pp251-272
(9) Ledoit, O. and Wolf, M. (2002), "Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size", Ann. Statist., Vol. 30, pp1081-1102
(3) Ledoit, O. and Wolf, M. (2004), "A well-conditioned estimator for large-dimensional covariance matrices", J. Multivariate Anal., V. 88, pp.365-411

Thank you! ©

